Problem: A ball is tossed **upward** from the Royal Gorge Bridge at a velocity of 6 m/s. If the bridge is 1053 ft above the river, derive **and** solve the differential equation predicting its height as a function of time. Predict the time of impact and assume the balls flight through the air is frictionless. Solve the problem by hand and by using Mathcad's Runge-Kutta function.

we know height is a function of time:

h = f(t)

where the acceleration is solely due to gravity

celeration is gravity $\frac{d^2}{dt^2}h(t) = h'' = g$ where: $g = 9.807 \frac{m}{s^2}$

Solving by hand by separating the variables and integrating (shown to the right):

Establishing a coordinate axis system where downward is negative and upward is positive makes g negative. Any initial vertical velocity is just c_1 while any initial displacement is c_2 (both constants must be signed properly depending upon the initial conditions). The river is established as zero height. This yields the classic ballistics equation ignoring friction.

Inputting the initial conditions:

$$\mathbf{h}(\mathbf{t}) := \frac{-\mathbf{g} \cdot \mathbf{t}^2}{2} + \mathbf{v}_{\mathbf{0}\mathbf{y}} \cdot \mathbf{t} + \mathbf{h}_{\mathbf{0}\mathbf{y}}$$

 $h'' = -g \cdot dt^2$

 $\mathbf{h}' = -\mathbf{g} \cdot \mathbf{t} + \mathbf{c}_1$

 $h(t) = \frac{-g \cdot t^2}{2} + c_1 \cdot t + c_2$

$$oot(h(t), t) = 8.725 s$$

Impact at 8.725 seconds

